ARYAN SCHOOL OF ENGINEERING \& TECHNOLOGY

 BARAKUDA,PANCHAGAON,BHUBANESWAR,KHORDHA-752050

LECTURE NOTE

SUBJECT NAME- MECHATRONICS
BRANCH - MECHANICAL ENGINEERING
SEMESTER - $5^{\text {TH }}$ SEM
ACADEMIC SESSION - 2022-23 PREPARED BY - BHAGYASHREE PANDA

INTRODUCTION TO MECHATRONICS
Definition and Evolution Level of mechatronic:-
The synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of produces and manufacturing processes.
or
Integration of electronics. control eng neercing and mechanical engineering.
\rightarrow mechatronics involvel a number of technologies such as:-

- mechanical engineering;

2. Electronic engineering:
3. Electrical engineering:
4. computer te chaloly.
5. control engineering.

Thiol can be considered to be the application of computer based digital control technciael through electronic and electric interfaces to mechanical engineering problem.
ADVANTAGES AND DISADVANTAGES OF MECHA TRONICS:-

ADVANTAGES:-

1. The products produced are cost effective and of verey good quality.
2. The performance characteristics of mechatronics products such which are otherwise very difficult to achieve without the synergistic combination.
3. High degree of flexibillity.
4. A mechautronic product can be better than bust sum of its parts?
5. Greater extent of machine utilisation.
6. Dueto the integration sensors and contrial systems in a complex system, capital expenses are reduced.
7. owing to the incorporation of intelligent, self correcting sensor y and food back system, the mechatrionic approach reviles in:

- greater productivity;
i' higher quantity and producing reliability;
DISADVANTAGES:-

1. High cincitial cost of the system.
2. Imperative to have knowledge of different engineering fields of design and complementatron.
3. Specific problems for various system will have to be addnevied separately and properly.
4. It is expansive to incorporate mechatronics approach to existing/old system.
Applications of mechatruncics:-
5. Automotive mechanics.
6. Fax and photocopier e mechanics.
7. Dish washeres.
8. Airconditioners, elevator contrials.
9. Automatics washing machines.
G. Flexible manufacturing systems.
10. Document scanners.
11. Integrated circuits manufacturing systems.
12. VCRS and CD players
13. Robotics employed in welding, nuclear inspection et Citron

Scope of mechatronics in cinductrial Section:

1. Better design of products:
2. Better process planning.
3. Reliable and quantity -oriented man faltuning. 4 - intelligent process control.
components of a mechatronic system:-
The term mechastroncic system encompasses a myriad of devices and 5\% Stans.
mechanical system

4. Actuators:- The actuators produce mation or cause some action.
Ex:-salenoid, voice coils, dconotorl, stepper motors, servo motor, hydraric 2. Sensors:- The sensors detect the state 07 the system parcometerel, in put and outputs.

Ex:- Switches, Potentimotor. Digital encoder., Strain gauge, Thermos co uple 3. Input signal condition ing and inter facing:-Ex:- Discrete circuits. Amplifiers, Fiutlen A / s, DID
4. Digital contrial Archive ctures: Digital device l control the system.
FX: Logic cirovisl, microcontrollen. SBC, PLC, contral algoricthms, communication.
5. output signal conditioning and interfacing. conditioning and interfacing circuits provide connection between the control circuit and inputloutput devices.
6. Graphical displays:- Graphical displays provide visual feed back to users.
Example of mechatroncic system:-

1. Home applicances:-

- Washing machines.
- Bread mechinel etc

2. Auto mobile:-

- Electrical fuel injection
- Antilock brake SYStem

3. Acrecraft\%.

- Flight contrical,
- Navigation system.

4. Automated many facturing:-

- Robots
- Numerically controlled CNCJ machine tool.

Copy machine:- Example of mechatroncic System.
Major components:-
(i) Analog circuits;
controlling lamps.

- Heaters.
(ci) Dcigetial circuits.
- control digit displays.
- Indicator lights
- Buttons
- suit cher.
(cis) microprocellor- co-ordinatel allot the Functions in the machine.
(iv Sorvo and stepper motors - Loading and trionsporeting the paper, turening the drum and indexing the sorter.
copying process:
An original ina loading bin scanning
metal drwon with charge distribution
The paper from a loading caretidge with on electrostatic deposition of link tone powder e \downarrow
Heated the paper
\downarrow
Delivered the copy to on appropriate bin by a soretizg mechancison.

ELEMENTS OF ENC MACHINES
introduction to numerical control of machine and CAD/CAM :
NC machines:- NC Machines assimilate a method of automation, where automation of medium and small volume production is done by some controls under the instructions of a program the definition of $N C$ (Numerical control) as given by EIA (Electronic industries Association) is as under.
"A system in which actions are controlled by the direct insertion of numerical olata at some point. The system must automatically in terpret at least some perefion of this data."
in NC machines, the input information for controlling the machine tool motion is provided by means of punched tape or magnetic tapes in a coded language.
Working of NC Machine tool:-
The working sequence of a NC machine tool viz.e. viz operator controlled machine tool.
-The first two steps, component drawing and process planning are similar in both operator controlled and NC machine tools.

- In the operator controlled machine tools, the operator controls the cutter position during manufacture and also makes necessary adjuster $n t s$ and corrections to produce the desired compent Scanned by TapScanner
- However, in NC machine tool the operator is replace, By the data processing part of the system and the control unit.
- In the data processing unit, the co-ordinate information regarding the component is recorded on a tape by means of a teleprinter.
- Tape is fed to the control unit which sends the position command singnals to sideway transmission elements of the machine. At the same time, the command signal is constantly compared with the actual position achieved, with the help of position feedback signal derived form automatic monitoring of the machine tool slide position. The difference in true signals, if any, is corrected un th the desired component is produced.

(a) operator contrictled machine tool
(b) NG machine

Main elements of a Noomachine tool:-
(1) The control unit (also known os NC console or director).
(2). The drive units.
(3) The position feedback package.
(4) Magnetic box.
(5) manual control.

Main elements of a NC machine.

- In the control unit, a tape recorder reads the instructions (written in a coded language) for manufacturing the component.
- The instructions under electronic processing and the control unit sends command signals to the drive units of the machine tool and also to the magnetic bar (Electrical control cobinet). Command singnals sent to the drive units of the machine tool, control the length of travel and feed rate, while the command signals sent to the magnetic box control other functions such as spindle motor starting and stopping selecting Scanned by TapScanner
spindle speeds, actuation of tool change, coolant supply etc.
- A feed back transducer provided in the machine tow checks whether the required lengths of travel have been obtained. It sends the information of the actual posisition achieved to the control unit. In case there is any difference between the input command signal and the actual position achieved, the drive unit is actuated by suitable amplifier from the error signal.
- Manual control provided in the machine fool assist the operator to perform some functions manually such as motor start-stop, speed change, feed change, axes movements, coolant supply etc. Classification of $N C$ machines:-
A). According to control system.
(1). Point-to-point system: The machining is done at specific positions.
Example:- stepped furring on lathe, pocket Drilling machine operation
(2) Straight line system:- It is an extension of point to point system.
En:- stepped turning on lathe, pocket milling ed.
(3) Contour system- There are continuous, simultanous and co-ordinated motions
of the tool and workpieces along different coordfnate axes.
E_{x} :- Machining of profiles, contours and curved surfaces.
(B) According to fred back: -
(1) open loop system: - There on 'feedback' and on return signal to indicate whether the tool has reached the correct position at the end of operation on not.
Example:- co-ordinate drilling machine.
Q Closed toopsystem: - A feedback is built in to the system, which automatically monitors the position of the fool.
It is more expensive than an open loop system.
Applications of NC Machines:-
The major applications of NC machines are:(1) Complex parts.
(2) Parts which are frequently subjected to design Changes.
(3) Repetitive and precision quantity parts which are fo be produced in low to medium batch quantity. (4) To cut down lead time in manufacture.
(6) In situations where the investment on tooling and fixture inventory will by high if parts are made on conventional machines fools.

Advantages of NC machines:-
(1) Accuracy achived is of high order.
(2) Reduced production cost per price.
(3) less scop.
(4) High production rate.
(5) Less operator skill required.
(B) Excellent reliability.
(7) Tooling cost low.
(8) Less cycle time and increased tool life.
(9) Increased flexibility.
(10) Production of complex parts.
(a) Reduced set-up time
(10) Elimination of special jigs and fixtures.
(13) Reduced inspection.
(44) Lower labour cost.
(15) Reduced floor space.
(10) Easy and effective production planning.

CNC machines:-
In a CNC machine, a minicomputer is used to control machine tool functions from stored in Information on punched tape input or computer terminal input.

The definition CNC (computer Numerical control) as given by E/A is as under: "The numerical control system where a dedicated, stored program computer is used to perform some or all of the basic numerical control functions in accordance with control programmes stored in read/writite memory (RAM) of the computer".

CNC may also be defined as: "An NN system with a micromomputen or microprocessor using software to implement control algorithms.".
The control unit and panel of a CNC. The following points about ${ }^{(N C}$ machines are worth nothing.
$\left.\begin{array}{|l|l|l|}\hline \text { Tape } \\ \text { reader }\end{array} \begin{array}{l}\text { minicomputer } \\ \text { or } \\ \text { microcomputer } \\ \text { computer } \\ \text { hardware, } \\ \text { interface and } \\ \text { servosystem }\end{array} . ~ \& ~ \begin{array}{l}\text { machine } \\ \text { tool }\end{array}\right] \quad\left[\begin{array}{l} \\ \hline\end{array}\right.$
computer Numerical system ((NC).

- The control unit and a panel of CNC differs from that of NNC controls in that, it works in ONline mode whereas NC works in batch processing mode.
- A typical CNC may need only the drawing specifications of a part to be manufactured and the computer automatically generates the part program for the loaded part.
- The part program once entered into the
computer memory can be used again and again.
- The input information can be reduced to a great extent with the use of special sub-programs developed for repetitive machining sequences.
- The CNC machines have the facllity for proving the part program without actually running it on the machine tool.
- CMC control unit oullows compensation for any changes in the dimensions of the cutting tool.
- With ENC control systems, it is possible to obtain information on machine utilisation which is useful to the managements.
Functions of CNC :-
(1) Machine tool control.
(2) in-process compensation.
(3) Improved programming and operating features.
(4) Diagnostics.

Advantages of CNC machine:-
(1) Greater flexibility)
(2) Increased productivity.
(2) Reduced data reading error.
(4) Consistent quality.
(5) Automatic material handling .
(6) Elimination of operator errors.
(7) Reduced operator activity.
(8) Lower labour cost and smaller batches. Scanned by TapScanner
(i) Longer tool life.
(iO) just-in - time (JIT) manufacture.
(11) Reliable operation.
(12) Elimination of special jigs and fixtures.
(B) Reduced inspection.
(14) Less scrap.
(15) Accurate costing and scheduling.
(b) CNC machine can diagnose program and can defect the machining malfunctioning even before the part is produced.
(77) conversion of units - possible within computer memory.
Disadvantages of CNC Machines:-
(Higher investment cost.
(2) Higher maintenance cost.

- Costlier ENC personnel
(1) Airconditioned places are required for the installation of the machines.
s unsuitable for long run applications.
(8) Planned supports facilities.

Applications of CNO :-

- Drilling machines.
- Turning machines:
- Boring machines
- milling machines.
- Grinding machines.
- pipe bending machines.
- coil winding machines.
- flame cutting machines.
- welding, wire cut EDM and several other areas.
CAD/CAM:-
CAD/EAM (computer - Aided Design/computer - Aided manufacture) techondogy was umitiated in the aerospace industry but presently it is spreading at a rapid pace in all industries.

It can be defined most simply as the use of computers to translate a product's specific. equ'requirements in to the final physical product.
following points are worth nothing about CAD/ CAM techonology :-

- with this system, a product is designed, produced and inspected in one automatic process.
- It plays a key role in areas such os design anglysis, production planning, detailing,
documentation, N(C part programing, tooling fabrication, assembly, sig and fixture design, quality control, and testing.
- Whenever any deviation is noted, a progrannable controller takes automatic corrective action to compensate for the deviation. Thess
closed loop system is formed which produces consistent quality products, reduces wastes and improves productivity.
- CAD/CAM system is ideally suited for designing) and manufacturing mechanical components of free form complex with thrace dimensional shapes.
CAD
Definition:- In the moderen sense, CAD (computer Aided Design) is defined as:-
"A design process using sophisticated computer graphics techiques, backed up with computers software packages to aid in the analytical, development, costing and ergonomic problems associated with design work".
Advantages:-
(1) Drawings can be produced at a faster rate.
(2) Drawings produced by CAD systems are more accurate and neat.
(3) In this system there is no repetition of the drawings. * CAD systems assimilate several special draughting? techniques which are not available with convendioral means.

5) Design calculations and analysis can be carried out quickly.
(b) With CAD systems superior design forms can be produced.
((1) CAD simulation and analysis techniques can
drastically cut the time and money spent on prototype testing and devolopment - often. the costliest stage in the design process.
(8) Using $C A D$ systems design can be integrated with other disciplines.
CAM
General aspects:-
CAM (computer-Aided manufacture) concerns any automatic manufacturing process which is controlled by computers.

The most important elements of CAM are:-
(1) ENC manufacturing and programming teching (2) computer controlled robotics manufacture and assembly.
(B) flexible manufacturing systems (FMS).
(4) Computer Aided inspection (CAI) techiniques.
© Computer Aided testing (CAT) techniques:
Advantages:-
(1) product obtained is superior in quality.
2. The manufactured farm has a greater versafifty.
(3) Higher production rates with lower workforces.
(9) There is less likelihood of human error.
(5) As a result of increased manufacturing efficiency cost savings are materialised.

Software and hardware for CAD/ CAM:
The functions of CAD/CAM systems are mainly determined by the software. Soft ware usually consists of a number of separate application packages to perform the desired function. The size of computer depends on the number and sizes of packages and number of work stations:
Hardware :-
Hardware is responsible for the reliability and seed of response of the system. A wide range of standard software is available and generally it is not worth developing users own software. Though a system can be built up from standard software packages from different sources and standard hardware, it is often costly because of the considerable programming effort required to interface the packages to a common date base to provide user friendly software to adapt the system to the user's requirements. It is thus advisable to adopt turn key system for turn key suppliers.
Functioning of CAD /CAM system:-

- CAD/CAM is an interactive computer graphic tool that enhances design and manufacturing? functions to creat a highly profitable product. This technique is being applied by big industries form. Scanned by TapScanner
improving overall manufacturing performance. - It is not a standard tool which can be fitted into any company but has to be tailored to suit the needs of the company. It is rather complex teehnde and has wide potential for immediate benefits.
- Uscually this tool consists of a dedicated compute which is connected to a number of work-stations. The system is used to assist in the design and manufacturing, through the use of an expanda ble set of linked software dulles. A designer can define dimensions and display virus of 2 dimensions, $2 \frac{1}{2}$ dimensions and 3 dimensions parts on modules. It is possible to generate the families of part directly by a parametric processor either by direct scaling an using a catalogue of ? subprograms. from the geometric definition a solid model can be constructed, to as ist in visualisation. It is possible to stare model be di to assist in v. Complete. details of designs on numerical control types for subsequent use on demand. Bench making tests are carrie out to ensure system's capability.

Features and characteristics of CAD/CAM systems:-
(1) A major portion of the out put of the engineering sector involves batch production and CAD/CAM offers immense cost and quality benefits for such requirements.
(3) The work-in-progress, in batch production, is reduced considerably.
(3) It is possible to produce at random all the variants and series of a product planned to be manufactured by a firm.
(4) Such a system has inherent flexibility to cater to new models of the product in pipeline without major modification.
(5) such a system, several machining centres are arranged one after the other with robots and proper automatic materials handling equipment. software is developed robots and proper automatic materials h to integrate the machine CNC control and the handing system. Each machining centre is equipped with several fool magazines. All the fools required to complete each operation on each model of the product can be stared in the magazine. (6) All the part programs for the different models are stared in the memory. System has only to identify. the model of the product presented to a machine in order to complete the
machining operations. Thus it is possible to have totally random mixes of models of a product proceeding down the line at any one time.
(7) The system can be conceived in multiplies of $15-20$ minutes operations. If certain operations take longer, then multiples of similar machines can be installed in the line. Sometimes identical machines are introduced for each operation so that production can continue even if one machine goes down.
(8) - The components are loaded on to a pallet. Means are provided to identify the exact model.
-Loaded pallets enter the line and wait at the start of the line until a signal that one of the first operation machines is vacant is obtained.

- The handing system automatically directs the pallet to the first vacant machine for first operation.
- The pallets are loaded on a fixture. The finturie is designed so that if permits access to all four sides and end faces and wherever machining operation is required. The pallets are designed to have windows where access for machining is required.
- As the pallet enters the machining area, our blast clears both the fixture and pallet locations. The finturce is then properly clamped and supported. Touch trigger probes are used to check its location in the pallet.
- Tenders and estimates can be quickly produced to high quality.
APplication areas for CAD/LAM:-
(1) Design and design analysis:-
- CAD system would be best suited for drawing offices where frequent modifications are required on drawing and several parts repeat.
- It must be remembered that it is very easy with computer to make modifications and very fast to draw part profile once its details are fed into computer.
- once a drawing is entered in the CAD system, later modifications. can be done quickly, and detail drawings can be prepared quickly from a general arrangement drawing.
- Ne taper can be produced.
- storing of the drawing is very convenient, easy, occupies very less space and symbols fare o the for electrical, hydraulic, control and instrumentation circuits can be called up quickly and positioned
on the schematic drawing.
- Standard components can be stared permenently in the data base and called up and positioned on the drawing, resulting in saving of time and enforcement of standards. It is possible fo associate nongraphical information like past number, supplier, meterial etc, for any component assembly.
- It is very convenient to calculate properties like weight, centre of gravity, moment of inertia, etc, because 3-D models can be easily produced.
- It is also possible to carry out finite element analysis by producing meshing for analysis.
(2) Manufacture: -
- with CAD/CAM system the complete NC part programming process can be carried out interactively, inclueling post processing and production of NC tape. Source programs in languages such as Apt can be produced. Systems can verify tapes by producing tool centric path pilafs.
ELEMENTS OF INC MACHINES:-
introduction:- A computer numerically controlled (INC) machine is a mechatronic system since the machine tool which is a mechanical system is Scanned by TapScanner
incorporated or integrated with the electronic controls for its different drives and romputer system for interfacing the software with the mechanical and electronic system.

Hardware or electronic circuits control the motions of various drives. The design and construction of CNC machines differs greatly from that of conventional machine tools. This differsace arises from the requirement of higher performance levels. The CNC machines of ten employ the various mechatronic elements that have bowen developed over the years. However, the quality and retiability of these machines depends on the various elements and subsystems of the machines.

The following are some of the important constituent parts, and aspects of CNC machines to be considerred in their designing.
(1) Machine structure.
(2) Grideways/slideways.
(3) Drives.
© Spindle and spindle bearings.
(5) measuring systems.
(Controls.
(A) Gouging?
(8) Tool monitoring
(9) swart removel.
(10) Safety.

Machine structure:-
The "machine structure" is the load carrying and supporting member of the machine tool. The design and construction of CNC machine should be such that if meets the main "objectives" (1) High precision and repeatability, (ii) reliability (iii) Efficiency. $9 n$ order to meet these requirements, the numerically controlled machine tools should have a structure with the following characteristics: (1) It does not deform on vibrate beyond the permissible limits under the action of static and dunamic forces, to which it is subjected.

- static load of a machine tool results from the weights of slides and the workpieces, and the forces due to cutting.
(2) Its design should be such that the thermal distortion is minimum. The machine tool should be protected from external and internal heat sources; some of these heat sources are: Electric motor; friction in mechanical drives, gear boxes, bearings and quideways; machining process; temperature of surrounding objects.
- Thermal deformation due to thermal load may be reduced by:-
(1) Designing the structure thermo-symmetrically
(1) Extemenal mounting of drives.
(iii) Using aproper lubrication system for removing frictional heat from bearings and guideways.
(iv) Removing the callant and scuaref efficiently for the dissipation of heat generated form the machining process.
(3) The machine structure design should be such that the removal of swart is easy and the chips etc, do not fall on the slideways.
- Guidways/slidways:-

Introduction: - In machine tools the guideways are used to serve the following purposes:
(1) To control the direction or line of action of the carriage or the table on which a foolor a workpiece is held.
(11) To absorb all static and dynamic loads.

The guiderays maybe an integral part of the machine structure or may be mounted separately on the structure. These guidways may be horizontal, vertical or inclined. However vertical and inclined guideways are preferred so that chips produced during the cutting operation do not get collected
on the quickwoys.
The shape and size of the work produced depends on the accuracy of the movement and kinematic accuracy of the quidway, kinematic accuracy depends on the straightness. flatness and parallelism errors in the guideway.

- In a CNC machine the design of guideway/stideway should:
(1) Reduce friction,
(II) Reduce wear,
(iii) satisfy the requirements of movement of the slides;
(iv) Improve smoothness of the drive.

Factors influencing the design of guideways:-
(1) Geometric and Kinematic accuracy.
(2) Position in relation to work area.
(3) Rrovesion for adjustment of play.
(4) Rigidity
(5) Damping capability.
(6) velocity slide.
(9) friction characteristics.
(8) wear resistance.

Q Protection against swaff and damage.
(10) protective guards to safeguard the glideways against accidental damages.
(41) freedom for unnecessary restraints.
(12) Effective lubrication and efficient lubrication systems.

Types of guideways:-
(1). friction guideways.

* be guideways.
- flat guideways.
- Dovetail guideways.
- cylindrical guideways.
(2) Antifriction linear motion (LM) guide ways.
(3) frictionless guideways:
(1) Hydrostatic guide ways.
(11) Aerostatic guide ways.
friction guideways.
- These gridewoys find wide application in conventional machine tools due to their low manufacturing cost and good damping properties.
- They operate under conditions of sliding friction and do not have a constant coefficient of friction. The frictional coefficient varies with the sliding velocity coefficient of frication v / s velocity of stick-slip range as shown in figs. slide graph for friction guideways - At the commencement of the movement, the coefficiont of friction is very high, but as the velocity increases it falls rapidly and beyond a certain
critical velocity it remains almost constant. Thus, to start motion / movement, the force to over come friction has fa be correspondingly high. This force results in the drive machanism. such as a screw, being elastically deformed.
- with the increase in speed, the friction decreases and a greater amount of mondement than that intended for the slide takes place, this may lead ultimately to a jerky motion. This phenomenon is known os "gtrak-slip Phenomenon".

The possibitity of this phenomenon can be reduced by using materials such as PTFE (Poly tetra flvorv ethylene) and turcite at the quideways interface, these materials have a low and constant coefficient (of the order of 0.1).
(1) Voe guideways:-

- In case of vee quideways with apex upwards, there is no chip falling or accumulation. In this case lubrication is difficult. In case of inverted wee guideways there is a possibility of falling and accumulation of chipsihowever lubrication is easier
- The vera quideways are widely used on machine tools, especially on lathe beds.
- One of the advantages of ven guideways is
that the parallel alignment of the guideway with the spindle axis is not affected by wear.
- These guideways wear away rapidly due to lack of bearing surface. These are difficult to manufacture.
(118) Flat givideways:-

- These guideways have better load bearing capabilities than other guideway.
- These are easier to manufacture.
 accurate fitting of the slope on the flat surface. Flat quideways.
- These quideways are suitable for heavy load transmission.
(iii) Dovetail guideways:-
- These guidways have large load carrying (apacity and tend to check the overturning) tendency under eccentric loading?
- They are preferred when both horizontal and vertical locations of moving parts are considered
essential.
- jibs are used to ensure accurate fitting of the slide on the dovetail surface. The jibs are taper and can be adjusted to reduce eneressive chearani caused by wear.
- Although the vee type guidecways have certain? advantages, it is the flat or dover forms which are used on CNC machine fools.
- The mojority of lathes have a combination of vee and flat guide ways to percent twisting of the slide.
provision has also to be made to prevent the carnage Dovetail guideways. Screw from lifting off the guideways.
Note:- When the guidways are an thtegral part of the castings and get worm out after aperiod of time, it is necessary to dismantle the machine to remachine the guidmays so that their accuracy is restored. To overcome this diffeulty. Permachined hardened steel guidways are fastened to the main casting which can be replaced if they are worn out or damaged.
(11) Cylindrical guideways:-
a cylindrical form of gruidways; in this case the bore in the carriage housing provides support all around the guideways.
- These guideways are very efficient for relatively short traverses and tight loods.
- Their use for long traverses and heavy loads is not suitable because the guideways may sag or bend in the centres of the span under a load.

cylindrical or circular type guide ways.

Antificication linear motion (LM) guide ways:These guideways are used on CNC machine tools to reduce amount of wear, friction, heat generation and improve. smoothness of the momemet.

- The antifriction guideways are employed to overcome the relatively high coefficient of friction in metal -to - metal contancts and the resulting. limitations adderessd above.
- They use rolling elements in betwerenthe moving and stationary elements of the machine

Advantages: - The antifriction quideways claim the following advantages over the friction, guides:
(1). High load carrying capacity.
(2) Heavier preloading possibility.
(3) High traverse speeds.
(4) Low frictional resistance.
(5) No stick-slip.
(6) Ease of assembly
(9) Commercially available in ready - to -fit condition. Disadvantage :-
Their main disadvantage is lower damping capacity - Although the rolling element bearing have less - damping characteritics than friction guideways, LM. guidewoys have become common in mechine tools on account of their rapid traverse rates.
Types of antifriction guide ways:-
Although several types of antifriction guideway are put to use, yet the most commonly used in CNC machines are:-
(1) Linear bearing with balls.
(2) Linear bearing with rotters.
(1) Linear bearing with bull:'s haft

A linear ball bush, Ball uses recirculating balls within a bush type of bearing. Linear ball bus hing cage These are designed to rue
along precision ground shafts and offer frictindess movement over varying strokes of length with high linear precision.
(8) Linear bearing with roofers:-

The recirculating linear Holler bearings are used for movement along a flat plane. Their main characteristic feature is that there is continuous roller circulation which allows unlimited linear movemet.
fig. Shows a linear roller bearing (also called a "fychoway"):

- It consists of hardened and precision ground supporting elements and a number of cylindrical rollers. As in the case of roller bearings the rollers are guided between shoulders of the supporting? clements with very close tolerances.
- The grinding element prevents the rollers from falling. out and sliding against each other. Also the guiding dement assists in smooth return of the rollers to the loading zone.
- The rollers are in constact with guidecway machined on the bed of the machine. This arrangement prowi. des smooth and easy movement but the machine bed has to be machined to an accurate form. Also the machine bed surfaces coming in contact with the rollers have to be hardened.
- These bearings can be mounted horizontally for load carrying applications, such as machine tool table or they can be mounted vertically to provide supports guidance and motion for the vertical elements of the machine tod.
- Wee and flat roller arrangement shown in fig, can also be used to provide friction. less linear movement.

vie and flat rooter.
Frictionless quideways: -

1) Hydrostatic quideways:- It these guide ways the
surface of the slide is separated from the guideway by a very thin film of fluid supplied at pressures ais high as 300 bar.

- In hydrostatic quideways frictional wear and chick sites are entruely eliminated.
- In such guideways a high degree of dyn a mic stiffness and damping is obtained, both the characteristics contributing to good machining capabitities.
- Owing to high cost and difficulty in assembly, their application is limited.
(ii) Aerostatic guide ways:-

In these gride ways the slide is raised in a cleshion of compressed air which entirely socatates slide and guidway surfaces.

- Their major limitation is low stiffnessand this limits their use to positioning applications only eg, a coordinate measuring machine (cmm).
Advantages of frictionless guideways:-
(1) Longer life.
(2) Large damping capability.
(3) friction bess
(4) High stiffness.
(5) No stick-slip.
(8) Less thermal distortion due to better heat discip ation. Disadvantages : -
(1). Difficulty in assembling the quideurays.
(2) High cost.
(3) Leakage problems.

Section of guideways: -
The selection of quides for a paticular application basically depends upon the requirements of:-
(1) The load carrying capacity;
(1) Denaturing;
(iii) The traversespeed.
for getting the maximum benefit, most of the machine tool manufacturers make use of a combination of antifriction and friction guideways with PTEE/ turcite lining. In such a combination antifriction guideways improve the load carrying capacity while friction guideways improve damping property.
Drives:-
Drives are devices which impart motion to mechanical elements.

- in a eNC machine tool there are three major group of elements.
(i) Control and electronics.
(iii) Electric drives eeletromechanical drives)
(iii) Mechanical elemets (Able, slide, tool hodden etc.) In addition, there can be hydraulic and pormatic. systems which are integrated with CNC machine tool.

The primary function of the drive is to cause motion of the controlled machine tool member to conform as closely as possible to the motion commands iss ved by the eNC system.

- In order to ensurexahigh degree e of consistency in production, variable speed drives are essential.
- Most of the drives used in machine tools are electrical.
Depending on their characteristics, machine tool drives can be classified as follows:-
(1) Spindle drives:- (constant power)
(1) D.C. spindle drives:-
- separately excited D.C. shunt mater.
- controller.
- Thyristor (SCR) amplifier, or
- microprocessor based self-tuned thyristor amplifier.
- speed control:-
- Armature and field control.
(11) ACc. spindle drives :-
- squirrel cage induction motor.
- controller:
- microprocessor based pulse width modulated (PWM) invester
- speed control:
- frequency, vector control.
(2) Freed drives:- (constant torque)
(i) D.C. servo-drive:
- motor-permanent magnet.
- controller
- Thyristor D.C. amplifier
- Transistor pwn D.C. Chopper
- speed control: - Armature vol tace.
(1) Ac. servo-drive:
- Motor synchronous three phase A.C. motor with permanent magnet rotor.
- controller.
- Transistor for pom frequency inverter; anguag analog drive amplifier
- Transistor phi frequency inveter, digital drive amplifier.
- speed control:
- frequency control.
spindle drives:
The following motors are used in spindle drives:-
(i) D.C. Shunt motor (separately excited).
(ii) Three-phase Ac. induction motor.

The requirements of a spindle drive motor are
(1) Compactness
(2) High overload capacity.
(3) Large speed range of at least 1:1000.
(4) Maximum speed up to q000-20000 R.p.m.
(5) High rotational accuracy.
(6) Range of rated output from $3.7-50 \mathrm{kw}$.
(7) wide constant power band.
(8) fast dynamic response.
(9) Excellent running smoothness.
in CNC machines the D.C. Spindle drives are commonly used (say forstepless speed variation)

However, with the advent of microprocessor based A.C. Frequency inveteter, of late, the A.C. drives are being referred to D.C. drives as they offer several advantages.

- The main advantage of micropoocesson - based frequency converter, is the possibility of using the spindle motor for c-axis applications for speed control in the range of $1: 10^{8}$ with positioning feed drives:-
The main components of a feed drive are: (1) A feed servomotor; (ii) mechanical transmission system.

A "fred motor", unlike a spindle motor, hoes special characteristics like constant torque and positioning.

In continuing operations where a prescribed path has to be followed continuously, several freed drives have to operate simuldancously, this requires a sufficiently damped servo system with high band withe, \therefore.e. fast response and matched dynamic characteristics for different axes.
following are the requirements of CNCfoed drive.
(1) High tor que - to -weight ratio.
(2) Integral mounting freed back devices.
(3) During machining, the required constant torque for overcoming frictional and working forces must be provided.
(4) Low electrical and mechanical constants.
(B) Low armature or motor inertia.
(8) permanent magnet construction.
(3) Total enclosed non-ventitated design.
8) maximum speed up to 3000 r.p.m.
(9T The drive should be infinitely variable with a speed range of at least $1: 20,000$.
(10) Positioning of smallest position increments like-1-2 $\mathrm{\mu m}$. Should be possible.
(11) four quartrant operation -quick response charact eristics.
(12High peak torque for quick respones. for CNC machines the commonly used feed driver are D.C. and A.C. servomotors. Although cartier D.C. Servomoteors, because of thine excellent speed regulation, high torque and efficiency, Who were used most commonly on CNC machine, but now A.C. Servomotors have become more popular for machine tool applications because of the following 'characteristics':
(1) Higher reliability as composed to D.C. servomar tors.
(11) Provide a constant torque over their entire speed range:
(iii) Require less maintenance due to brushless operation.
(iv) Provide a better response and dynamic stiffness.
(v) Excellent temperature resistance.
(ii) fast response.
(vii) Increased power density.
(Vii) Low rotor inertia.

- All the ames in a CNC machine are controlled by servomotors. The movement along the different axes is required either to move the cutting fool or the work material to the designed positions.
- In order to accomplish accurate control of position and velocity, stepper motors are used for axis drive. The use of stepper motor considerably simplifies the system as fred back devices are not used. The cost of machine tool is also less. The steppers motors are suitable only for light-duty machines due to low power output.
Mechanical transmission system:-
The mehanical transmission system of a feed drive consists of the following: cements:-
(2) Elements to convert the rotary motion to a linear motion (Recirculating ball screwnut or rack - and" -pinion system)
(2) Elements to transmit for que (gear box on timing belt and couplings).

To keep the transmisson error to a minimum is the primary requirement in the design of a mechanical transmission system. To achive this, the following requirements are essential:-
(1) Low friction
(4) High stiffness
(ii) Sufficient damping (iv)
(i) High natural frequency.

1. Recirculating ballscrew and nut:In ballscrows, the sliding friction encounterd in conventional screws and nuts is replaced by rolling friction in a manner analogous to the replacement of simple joumal bearing by ball bearing.
Shows the recirculating ballercew and nut arrangement.

Recirculating ballscrew and nut arrangement.

- The mounting arrangement of a ball screw depends on its required speed, length and size, the position. of the ballscrew should be near the line of the resultant force arising from cutting, frictional and inertial forces.
- The efficiency of a recirculating ballscrew is of the order of 90 percent and is obtained by the balls providing a rolling motion between the screw and the nut.
- In a ballscrea system, attention should be paid to the selection of end bearings to minimise the positioning inaccuracies.
-The kallscriews used on CNC machines are usually of precision grade.
Advantages:-
The recirculating ballscreus are widly used on CNC machines because of the following advantages:-
(1) High efficiency.
(ii) No stick-slip effect.
(iii) Low frictional resistance.
(iv) Low drive power requirement
(v) High traverse speed.
(vi) Less wear and hence longer life.
(vii) Little temperature rise.

Preloading of nuts: one of the primary requirements of screw
and nut mechanism in CHC machines employed for motion transmission is that there should not be any backlash and if any should be minimum between the screw and nut. Backlash free motion results in the slide traveling without any positioning errors.
Spindle and spindle Bearings:-
Spindle:- The spindle carrerying the workpiece or tool when subjected to high cutting speeds and high material removal rates, experience deflection and thrust forces. To ensure incresed stability and minimise torsional strain, the machine spindle is designed to be short and stiff and the final drive to the spindle is located as near to the front bearing as possible.

The rotational accuracy of the spindle is dependent on the quality and design of bearings used. The ball on roller bearings are suitable fore high speeds and high loads because of low friction, lower wear rate and lesser liability to incorrect adjustment the ease of replacement when necessary.

Spindle bearings:- In modern machine tools, which employ high performance cutting tool materials the designed characteristics of spindles used are:-
(1) minimum deflection under varying loads.
(ii) Long service life.
(iii) stiffness.
(iv) Thermal stability.
(v) Good running: accuracy both in radial and axial directions.
(vi) Axial load carrying capacity.
(vii) High speed of operation, without chatter, vibration. on these characteristics do the accuracy and quality of the jobs produced depend. This can be achieved by using proper spindle bearing:

The various types of spindle bearings used in the design of a spindle for machine fools are:-
P. Antifriction bearing.
2. Hydrostatic bearing.
3. Hydrodynamic bearing. $\}$... fluid bearings.
(1) Antifriction bearing:-

The antifrieton bearings are suitable for high speeds and high loads.
These are often preferred to hydrodynamic bearings because the following reasons.

- High reliability.
- Ease of reptacment
- Low friction.
- Moderate dimensions.
- lesser liability to suffer from wear or incorrect adjustment.
on CNC machines, the following types of ball and roller bearings are used:
(i) Ball bearings.
(a) Deep groove ball bearings.
(b) Angular contact ball bearings.

Tapered roller bewaring:

cylindrical roller bearing with. tapered bore.

elyindrical roller bearing

Angular contact ball bearing:

Deep groove ball bearing.
(11) Roller bearings:-
(a) cylindrical roller bearings.
(6) cylindrical roller le earing (double row) with tapered bore.
© Tapered roller bearing l

- The ball and roller bearings are called antifriction bearings because the contact of support of rolling element is point contact in case of ball bearing
and line contact in case of roller bearing. It is of paramount improretance that these bearing are manufactured: with highest accuracy otherwise any error in any of the elements will severely affect the quality of job produced.
- The selection of a particular type of bearing for the spindle depends on the following requirements of the particular machine:
(i) spindle stiffness
(iispindle accuracy
(iii) speeds of operation.

Preloading of bearings:-
There -are some amounts of radial and axial clearances in the ball and roller bearings when a main spindle is mounted on bearings there should be neither an axial norad radial play in the main spindle assembly. This is achieved by prueloding.

- In case of tapered roller bearing and angular contact ball bearings, the axial and radial clearances can be taken up simultaneously by preloading.
- Cylindrical roller bearings (double row) with tapered bores are radially preloded by pushing the inner rave agouhst the taper, on the spindle

Advantages :-
(i) Preloading increases the radial and axial rigidity of the bearings.
(iii) Improves damping characteristics of bearings.
(iii) prevents rolling elements from disengaging themselves from the raceways.

- Preloading causes elactic deformation of the bearingy. Excess of elastic deformation causes metal to -metal contact producing noise.
(2) Hydrostatic bearings:-

Shows the principle of hydrostatic bearings:-

- Here the spindle is supported by a relatively thick film of oil (called hydrostatic pockets) supplied under pressure; the oil in the pockets being stationary. The oil is supplied to the bearing through a throttling system to control pressure and volume. Lubricating seals ane used to prevent the leakage of oil. There is no mechanical contact.
- The load ranging capacity of this type of bearing is independent of the speed of rotation. They have the following:-
(1) High wear resistance:

(ii) High alamping properties

(ai) High running accuracy principle of hydrostatic bearings.
- These bearings are used in grinding and borulny machines etc. (where temperature. causes problems in the part accuracy).
(2) Hydrodynamic bearings:-
shows the principle of hydrodynamic bearings:-
- The pressure of oil within the bearing is created by the rotation of the spindle. As the rotation of the spindle. As the spindle rotates, the oil in contact with the spindle is carried into wedge-shape cavities between the spindle and the bearing due to centrifugal action. As the bit is forced through the smalt clearances between the bearing and spindle, the oil pressure is incresed.
- In this type of bearing there is a constant flow of oil round the spindle, maintaining a thick oil film.
The essential features of these bearings are:(i) Godel running accuracy
(II) Simplicity
(iii) Good damping properties.

The main limitation of this type of baring is that a definite clearance must be provided for the oil film to be maintained between the beaning and the spindle; the clearances normally
provide of vary from 50 mm to 200 km depending upon the journal diameter.

- These bearings are used where the tad carnying capacities are low and frequent starting and stopping of the spindle is not required as in the case of grinding machines.
selection of spindle bearing :-
The selection of spindle bearing depends on the following factors: -
(1) Type of load-axial, radial, or combination.
(ii) Load intensity.
(iii) Rotational speed.
(凶)spindle stiffness.
(v) Thermal stability

The accuracy of a spindle depends on: (1) Radial. runout i (II) Axial runout.

- In radial run out the spindle shifts radially in any of 360° directions.
- in arid run out the spindle moves in the axial direction. for an ideal condition both the radial runout and axial rounout should be zeno.
- since the accuracy of the spindle also depends on thermal stability especially for high speed and high load carrying spindles, a proper provision should also be provided for lubricating the spindles, bearings.
- In recent development the metal balls and rollers are replaced by comic balls and rollers because the latter offer the following advantages :-
(i) Low coefficient of friction.
(11) Greater thermal stability
(iii) High are stance hardness.
(iv) High wear resistance.

The ceramic bearings can be employed for spindle speed in range of 10,000 to 20,000 R.p.m.
\{ROBOTICS\}
Definition and Advantages of robotics:-
Definition :-
Robotics may be defined as follows:-
"Robotics" is the science of designing and building robots suitable for neal-life applications in automated manufacturing and other non-manufacturcing enviro-
mints." or,
"Robotics is the art, knowledge base and know how of designing, applying andusing robots in the human, endeavors".

- Robotics is an interdisciplinary subject that benefits from mechanical engineering, electrical and electronic engineering, computer science, and several other disciplines. Advantages:-
The main advantages of robotics are:-
(1). Reliability.
(2) Increased flexibility.
(5) Low cost in the longrunn.

Laws of Robotics:-
following are the law (philosophical in nature) of robotics (Sir issac Asimov proposed three basie laws; "zeroth law" was added later on):
zeroth law:- A robot must not harm a human being or, through inaction, allow one to come to harm:
first law:- A robot must not harm a human bleingon, through inaction, allow one to come to harm.
second law: - A robot must always obey human beings unless it is in conflict with a higher order law.
Third law: A robot must hot a protect itself from harm unless that is in confict with a higher order law.
ROBOT:-

- The origin of word 'robot' is in the czech word 'robot' meaning either a stave or a mechanical item that would help its master. A robot therefore carries out the task done by a human being.
- The word I robot always refers fo an alitomated multifunctional manipulator that works by energy, to perform a variety of torsks.
- Arobot is any mechanical device operated a somatically to perform in a seemingly human way. By this definition, a garage door opener, which automatically opens the door by remote control is also a robot; obviously this is not an industrial robot.
- Robot, once a creature of science friction, is today a reculity, It is the off-shoot of the second industrial revolution.
- A robot by virtue of its reprogrammability and versatility is productive, dynamic and flexibite to an extent.
- Robots range from toys to automated assembly lines. functions of a Robot:-
The functions of a robot can be classified into three areas :-
(i) sensing" the environment byexterenal sensors. Example: vision voice, touch, proximity and soon. (2) "Decision "making" based on the information received from the sensors.
(3) "performing" the task ctecided.

Advantages and Dis advantages of RobotsAdvantages :-
(1)Lifting and moving heavy objects.
(2) working in hostile environments.
(3) Providing repeatability and consistency.
(4) working during unfavourable houris. ${ }^{(1)}$
(5) Performing dull or monotonous jobs.

Increasing productivity, safety, efficiency and quality of products.
(7) Achieving more accuracy than human beings. Disadvantages:-
(1) The robots lack capability to respond in emergeneies:
(2) The inetial and installation costs of equiponients of robots are quite high.
(8) They replace human workers, thus coursing
resentemient among workers.
Types of industrial Robots:-
Industrial robots can be broadly divided into two main groups as follows:
(1) General purpose robots.
(2special purpose robots.
(1) General purpose Robots:-

- These robots carry standard designs and parts and readily available:
- They can be easily adapted to the users' requiremints by attaching suitable end-. effectors on fingers to them according to the requirement of the work, such as a part picking operation, welding operation, spray painting etc.
-since such robots are mass produced, they are cheaper.
(2) special purpose robots:-
- These robots are tailor made to specific jo of requirements. The ultimate user has to feed his requirements and, based on them, these robots are specially designed and built to cater to such specific needs. Obviously, their designing and manufacturing consumes a tot of time. As such, they can bot de readily available in market.
- since they can not be manufactured on mass scale, their prices are bound to be higher.
Robotic systems:-
A system is an integral whole of parts or subsytems. It has a specific goal or output for a given set of in puts, a system may have many goals as well.
- A "robot" is a system as it combines several subsystems that interact themselves os wall as with the environment in which the robot works.
- A robot has somespecific objective. It may be designed for the following jobs/ assignments:
(i) To simply pic up and place the workpieces.
(ii) To interact with and work load a lathe, a milling machine or any equipment;
(IIi) To perform some ass embly work.

To accomplish these assignments a robot should have. the following "components".

- A suitable manipulator arm with specified coordinated systems to attain a designed reach in the working space.
- A suitable control system with or with out servomechanisms for sending signals to the drives, on permitting steroage of programmes and data for desinet path planning with adequate speed and good accuracy.
- Some sensors. to. feed lack information for modifying the motion or path.
- A controller is provided with interfacing units connected to external equipment in the outside world.
- fig shows a scheme of robotic system. Rob of components: Refer to:

Robotic system - main components of a robot and the basic motions. The various components of a robot are enumerated and discussed below:-
(1) Base.
(2) Manipulator arm.
(3) End-effector.
(9) Actuators and transmissions
(A) Controller.
(b) sensors.
(1) Base: - The base may be fixed or mobile.
(2) Manipulator arm:-

- The most obvious mechanical configuration of the robot is the manipulator arm.
-There are several designs of the arm to facilitate movement with an the work envelope with maximum possible load and speed with high precision and repatability.
-The simplest robot may be a two or three axes arm. The axis is meant to understand independent movement or degree of freedom (DOF).
- A robotic manipulator arm consists of several separate links making a chain. The arm is located relative to the ground on either a fined base or a movable base. It has a free-end where an enddeflector or gripper or sometimes a specialised tool holder (for holding, say, a welding gun) or any powered device (say, a drill) is attached.
- In a fined base, six degrees of freedom robot, the first three links of the manipulator constitute the body and they help to place the end-effector. at a desired location inside its work environment on working volume. The remaining three links make up the wrist of the manipulator and are used to define the orientation of the manipulator end points.
- A robot is essentially a movable open chain of successively coupled bodies with one end fixed to the ground and the free end containing an end-effector. The bodies of the open Chain are usally links which are joined together by some lower pair connectors. The most common types of lower pair connectors are:
(1) Revolute pair (R)...($D \circ$ (D):
- It permits relative rotation about a unique pair axis and has a single degree of freedom.
(19.) Prismatic palre(p) (1.pof):-
-It allows relative stiding parallel with a noounique pair axis and has one degree of freedom (ii) Cylindricopoin (C) :- (2Dof):-
-It permits independent relative rotation about and relative sliding parallel to a pair axis and it has two degrees of freedom
(iv) Spherical pair (s) $=$ (3 Def) :-
- It is a ball and shoket joint that permits relative rotation about, therese non-coplanar interacting axes and hos, three degrees of freedom (v) Hook's' joint (T) (2DOF) it permits indep. indent rotation about two intersecting ames offeset by an angle α and has two degrees of freedom.
- The number of independent movemets that an object can perform in a 3-D space is called the number of degrees of freerdem ($D O F$).

However, the most basic joints are the one-Dof revolute pair ((R) and one - oof prismatic pair (P) and this two pains are excessively used in combinatimon in the robotic manipulators.
(3) End -effector: -

- Robot end-effector is the gripper or end of arm tooting mounted on the wrist of the robot manipulation arm.
- A robot performs a variety of tasks for which various tooling and special grippers ane required to be designed.
- A robot manipulator is flesble and adaptable. but its end effector is task-specific.
- A gripper designed for picking up a fool to be fitted to a CNC machine tool is net suitable for welding a railway vagon.

The wide range of gripping methods include:-
(1) Mechanical clamping.
(ii) magnetic gripping?
(iii) vacuum (suction) gripping.

Actuators and Transmissions: -
Actuators: - The robot arm can be put to a olesired motion with its payload if actuator modules are fitted in to provide power drives to the systems.

There are three different types of power drives in common use. They are:-
(i) penumatic drives:-

- These systems use compressed air to move the robot arm.
- The penumatic systems may employ a linear actuators, ie double acting eushioned eylinders or it may employ votary actuators like vane motors. However, linear actuators are more popular.
- The "advantages" of pneumatic actuators are: simple construction, redatively inexpensive, fart and reliable. The "dis advantages" of penipneumatic. system are smaller payloads, the mass inertia and delayed response of the robot aron due to the, sponginess and reduced repeatiblility.
- Non-servo robots conte built up with penumatically powered actuators.
(11) Hydrowtre drives:-
- In a hydraulic system, the electric motor pumps fluid ($0 i^{\prime}$) from a reserve tank to the hydraaulic actuators which are, in general, double acting piston. cylinder assembles - fluid at a higher pressure pass es through control valves before its entry into the linear actuatures. on the other hand, rotary actuator comprising some motors on hydralitic motors which
rotate continuously may also be employed.
- The hydraulic drives have high payload capacities and are relatively easy to maintain. They are, however, rather expensive and not as accurate as either the previmatic or electric drives.
(Vii) Electrical drives :-
- These drives are clean and quiet with a high degree of accuracy and reliability. They also offer a wide range of payload capacity, accompanied by an equally wide range of costs.
- D. C. Servo motors, Brushloss D.C. motors, Reversible A.C. servo motors and stepper motors are important electrical drives.
Transmission:-
"Transmission" are elements between the actuators and the joints of the mechanical linkage.
They are generally used for the following there rescrions:-
(i) often the actuator output is not of erectly suitable for driving the robot linkage.
Example: The high speed D.C. motor running at 3000 r.p.m say) may not be suitable for running a. robot at slower speeds: However, with appropriate gearing or transmission, the speed may be reduced to 30 rpm (i.e. $\frac{1}{2}$ rotation per second) which is reasonably fast. In addition, the rated torque at 3000 r.P.m is amplified by 100 .
(11) The out put of the actuator may be kine matically different from the joint motion.
(iii) The actuators are usually big and heavy and often it is not practical to locate. the actreaton at the joint.
- firstly, big actuators have large inertias and they are harder to move around in space then the links that comprise the mechanical tinkeuge. so it is desirably to locate them at a finned base.
- Secondly, because of their size, they can impede the motion of one or more links of the robot.

Thus, it is not uncommon to find linkages on gear train that transmits the power from the actuator over alarge distance to the \hat{j} int.
(5) Controller e: -

The "controller" provides the intelligence that is necessary to control the manipulator system. It looks at the sensory information and computes the control commands that must be sent to the " actuators to carvery out the specified tasks. It generally' includes:-
(1) Memory to store the control program and the state of the robot system obtained from the sensors.
(11) A computational unit that computes the control
Scanned by TapScanner
(110) The appropriate hardware to interface with the exterinal world.
(iv) The hardware for a user interface.

- The "user interface, allows the use of a human operator to maritor or contriel the operation of the robot.
- It must have a display that shows the states of the
- It must also have an input device that allows the human to enter commands to the robot.
The users interface may be a "personal computer, with the "appropriate software' ore "teach pendant".
(B) Sensors:-

The sensors perform the following functions:-
(1) To act as feedback devices for
(1) To act as fred back devices to direct futther actions of the manipulator arm and the end effector (gripper),
(4) To interact with the robot's working enviromont. usually there are two basic types of sensors. These are.
(i) Tactile sensors: -

These are "contact sensors" that must be brought in contact with the object fo obtain signals to measure the necessary qualities.

- When the tactile sensors mark physical contact with the object, an electrical analog or digital signal is generated and sent fo the robot ciontrolte Electrical signals may be obtaitired through the.? contacts of microwitches. Signals may alsobe obtained through mechanical pressures in
which change resistances of electical strain gage or general electrical potentials in piezoelectric crystals.
- Typical contact type robotic sensors include:
(a) Force sensors:
(C) Touch sencory
(*) Torque sensors.
(d) Position sensors.
(11) Non-tadile sensors:-

These are "contactless sensors" which sense the signals remotely, but only within the specified range of distance from the object.

- They detect and measure magnetic fields, infran and. ultraviolet tight, x-rays, electrical fields, ultrasonic sound waves on electromagnetic, waves.
-Typical non -contact robotic sensors include!
(a) Proximity sensors.
(4) Electro-Dptical sensors.
(c) Range imaging sensors.

Basic motions:-
The sin basic motions or degrees of freedom (Dofs) are os follows: 1
(1) vertical motion:- The entire manipulator arm can be moved, up and down vertically either by means of the shoulder swivel, ie, turning it about horizonatat axis, on by sliding it in a vertical slide.
(2) Radial motion:- Radial movement, ie. in and out movements, to the manipulator arm is provided by Elbow extension by extending it and drawing back.
(3) Rotational motion:-

- clockwise or anticlockwise rotation about the vertical axis to the manipulator arm is provided through Arm sweep.
(9) Ditch motion:- It enables up and down movement of the wrist and involves rotational movement as well. It is also known as wrist bend.
(5) Roll motion : - Also known as wrist swivel. it enables rotation of wrist.
(1) Yaw : Also called artist yow, it facilitates rightward or leftward swivelling movement of the wrist. The most versatile robots can have following degrees of freedom (Dots):
(1) Horizontal travel.
(1) Rotary movement.
(ii) Radial arm movement
(iv) vertical arm movement.
(4) Rotary wrist movement.
(11) Whist bend.
(14) Wrist sweep.

These mes of movement enable movements to be programmed that duplicate those of a human operator in performing ajob.
fig shows the basic components of micropre. cessor-based pneumatic robotic system.

Basic components of a microprocessor - based robotic system.
shows asian axes puma manipulator and fig Shows a scheme of computer - controlled puma robotic system. shoulder rotation.

Elbow rotation.

". wist bend". C flange rotation. Gripper mounting. wist roofing.
(a) Sin ames puma manipulator

(b) A scheme of compoter-controlled puma robotic system,
fig shows a general structure of an advanced robot. - The operational unit consists of articulated mechanics system" (Ams-compoising of rigid links and kinetic joint), transmission system and actuators which. control the configuration of each articulation.

General structunce of a advanted robot.

Mechanical actuator or mechanisme are devices which can be consided to be max convent in that they transform motion into rotations motion, or motion in one direction.
Actuators - Mechanical, Electrical, Hydraulic and penumatic.
a motion in a direction at right angles, or perhaps a linear reciprocating motion of the into rotary motion, os in the internal combustion engine where the reciprocating motion of the pistons is converted in to rotating rotation of the work and hence. the drive shaft.
mechanical elements include the use of linkages cams, gears, mack and -pinion, chains balt drives etc for example:

- Cams and linkages can be used to obtain motions which are prescribed to vary in a particular manner.
- Parallel shaft gears might be used to reduce a shaft -speed. Bevel geare might be used for the transmission of rotates motion through 90°.

Sensors and Transolucer

* Definition of sensor-

The sensor is the device which sense the condition state or value of process variable amd produce outer cot which reflects this condition, state or value. eg \rightarrow Thermometer sense temperature. The mercury expand or contract depending on temperature which is easilymersured with help of calibrated glass tube

* Definition of Transducer-

A transducer is a device that converts one form of energy to another

Most of transducers either electrical energy into mechanical displacement and/ or convert somenon-eledrical physical quantity to an electrical signal.

$$
\text { eg } \rightarrow \text { potentiometer }
$$

* Classification of Transducer
A. Based on whether an external power source is required or not
\mapsto 1. Active transducer - They donot require any power source for their operation. They produce electrical signal prapoantional to inst They wonk an energy conversion principle.
eg) Thermocouple Transslucen

42. Passive transducer - They require an external power source for their operation. eg \rightarrow Thermistor
B. Basel on type of op -
43. Anabgue Transducer - These transducer convent ip physical quantity to anabgus ole which is continuous function of time.
$\rightarrow 2$. Digital Transolucen - These trans deer convert if physical quantity into deatrical $/ p$ which may be in form of pulse.
c. Classification based on electrical principle involved
1) Variable resistance type $\underset{\text { eg. } \longrightarrow \text { Strain \& Pressure gauge }}{\rightarrow}$ Thermistor
2) variable - inductance type \longrightarrow Linear variable differential eg. \rightarrow Eddy current gouge (VI)
3) Variable -capacitance type
4) Voltage generating type eg. \square capacitor microphone
5) Voltage - divider type
g. $\cdot \vec{\square}$ potentiometer position sensor pressure - actuate voltage da rider

* Various specification of transducen -

1) Range - It indicate the limit between which ip can vary.
2) Span- It is difference between maximum \& minimum value of i jp.
3) Error- It is difference between result of measurement and true value.
4) Accuracy - It is closeness to true value.
5) Sensitivity - It is define as ratio of change in op to per unit change in ipp.
6) Nonlinearity- deviation of actual measured curve from ideal curve.

7) Hysteresis error- It is maximum difference in op within specified range of sensor when approaching point first with increasing and then with decreasing ip paramo.

8) Resolution - It is smallest detectable in cremental change of ip that can be detected in $\mathrm{p} / \mathrm{p} \mathrm{s} / \mathrm{g}$.
9) Dead band /time

It is range of isp values for which there is no opp.

* Electromechanical Transducer -

It is a device which convent mechanical motion (Vibration) into variation of electric current or voltage and vice versa.
These transducer are used primarily as actuating mechanism in automatic control system.
Advantage - D Less power consumption
2) Good frequency \& transient response
3) Fraction effects minimum
4) more compact
$2 y$ - piezoelectric transducer, loudspeaker, mi crophone

* Piezoelectric Transducer -

Piezoelectric material is one in which an electric potential appears across certain surface of crustal if the dimension of crystals are changed by application of mechanical force. When it is stressed or compressed generate electric charges with one face of material becoming positively charged and opposite face negatively charged. As a result voltage is produced.

The effect is reversible, if a varying potential is applied to proper anis of crystal, it will change the dimension of crystal. This effect is eg of pierselectric crystal- quart z, tourmaline, rochelle salt, lithium sulphate. Equivalent circuit of piezoelectric sensor-

Working of piezoelectric Device -
electrode
There is netdisplacument of charge with one face becoming positively charged
 and other negatively charged with application of force.

The net charge $q=S F$
where $\quad S \rightarrow$ charge sensitivity
$F \rightarrow$ force applied
The capacitance C of pierselectric material between metal electrode is

$$
C=\frac{\epsilon_{0} G_{r} A}{t}
$$

Er \rightarrow relative permitivity of materid $A \rightarrow$ Area
$t \rightarrow$ thickness
Since

$$
\begin{aligned}
q & =c V \\
V & =\frac{q}{c}=\frac{S F}{\frac{\epsilon_{0} \operatorname{tr} A}{t}} \\
\Rightarrow V & =\frac{S t A}{\operatorname{Cot}^{\operatorname{tr} A} A} \\
\Rightarrow V & =S_{V} t(F / A)=S_{v} t P
\end{aligned}
$$

where $S_{V} \rightarrow$ voltage sensitivity factor $=s /$ open
$P \rightarrow$ Pressure applied $=f / A$
Application

Measurement of pressure, force, acceleration
Q) A 2.5 mm thick quartz piezoelectric crystal having a voltage sensitivity factor of $0.055 \mathrm{vm} / \mathrm{N}$ is Subjected to a pressure of $1.4 \mathrm{MN} / \mathrm{m}^{2}$
a If permittivity of quartz is $40.6 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, calculate i> voltage op
ii) charge sensitivity of crystal

Sol-
Given

$$
\begin{aligned}
& S_{1}=+4 \mathrm{AN} / \mathrm{m}^{2} \quad 0.055 \mathrm{Vm} / \mathrm{H} \\
& G=40.6 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& P=1.4 \mathrm{~m} / \mathrm{m}^{2}
\end{aligned}
$$

i) Voltage op $V=S_{v} \cdot t \cdot P$

$$
\begin{aligned}
&= 1.4 \times 10^{6} \times 2.5 \times 10^{-3} \\
& \times 40.055 \\
&=192.5
\end{aligned}
$$

ii) charge sensitivity $S=E \cdot S_{v}$

$$
\begin{aligned}
& =40.6 \times 10^{-12} \times 0.055 \\
& =2.233 \mathrm{Pc} / \mathrm{N}
\end{aligned}
$$

* Light sensor -

1) Photo diode-

Photodides ane one type of light detector, used to convent the light into electrical energy. Photo diode operates in revensebias condition so giving a high resistance. When light falls on unction the resistance drops and current in circuit rises appreciably.

$$
\text { symbol- } \rightarrow)^{K}
$$

eg \rightarrow P|N, ow alanche phatodiode, schottky photo diode
2) Photo transistor-
phots transistor have a light sensitive collector-base pi junction. When there is no incident light there is a very small colledor to emitter current.

When light is incident, a base current increases which is directly proportional to light intensity. Darlington arrangement can be used because it has higher current gain so device gives greater current gain for given light

- symbol -

3. Photo pesistor/light dependent resistor (LDR) -

Photo-resistor is generally male of semiconductor material. Cadmium -sulphide is mostly used. photoresistor has resistance which depends on intensity of light falling on it. Resistance decrecuses as intensity of light increases. This happened because valence electron jump to conduction band absorbing light energy. symbol-

Application- used in street light - automatic switching Or of strict lights due to presence of LDR.

Temperature sensor
1 Resistance Temperature Detector (RTD) -
\rightarrow It is used to determine temperature by measuring resistance. The RTD wire is a pure material typically Platinum, nickel or copper.
\rightarrow These detect r are characterised by Positive temperature characteristic (Resistance increases when there is increase in temp.).
\rightarrow Relation between resistance and temperature is

$$
R_{T}=R_{0}(1+\alpha \Delta T)
$$

where,

$$
\Delta T=T-T_{0}
$$

$T_{0} \rightarrow$ Reference temperature
$R_{0} \rightarrow$ Resistance at reference temperature
$T \rightarrow$ Temp. under measurement $R_{T} \rightarrow$ Resistance at temp. T Typical I/0 relation of α RTD constant (Temp. coefficient of
$\rightarrow r$ resistance)

eg) A platinum thermometer has resistance in ${ }^{\text {eg }} \mathrm{C} \rightarrow$ at $25^{\circ} \mathrm{C}$. find its resistance at $65^{\circ} \mathrm{C}$, if it has $\alpha=0.00392 /{ }^{\circ} \mathrm{C}$.
$\xrightarrow{80 l^{n} \rightarrow}$

$$
\begin{aligned}
R_{T} & =R_{0}(1+\alpha \Delta T) \\
& =100(1+0.00392 \times(65-25)) \\
R_{T} & =115.58 \Omega \text { (Ans) }
\end{aligned}
$$

(2)

Thermistor -
$\rightarrow \quad$ Thermistor are small pieces of material made from mixture of metal oxides such as iron, manganese, nickel. These oxides are semiconductor.
\rightarrow The relationship between temp. \& resistance is non-linean. A typical graph is strum bebop.

Thermistor e are two type.
i) Negative Temp. coefficient (NTC) Thermistor\rightarrow When temp. increases, resistance decreases When " decreases, increase
ii) positive Temp. coefficient (PTC) Thermistor-
\rightarrow When temp. increases, resistance increases \& When , decreases, , decreases
NTC Thermistor-
\rightarrow Relationship between resistance and temp is

$$
\begin{aligned}
R_{T}= & R_{0} e^{\beta\left(\frac{1}{T}-\frac{1}{T_{0}}\right)} \\
& R_{T} \rightarrow \text { Resistance at temp. } T \\
& R_{0} \rightarrow \text { at temp } T_{0} \\
& T_{0} \rightarrow \text { Reference temp. }
\end{aligned}
$$

$\beta \rightarrow$ constant
Advantages
\rightarrow Thermistor are small and cheaper.
\rightarrow They hove fast response times
Didarivartage -
(3) Thermocouple-
\rightarrow used to measure temp. in the form of electric current of emf .
\rightarrow Thermocouple consist of two different metals joined together.
\rightarrow These are active transducer, which based on Seeback effect. Emf is devebped when two junction are maintained at different temperature.
The value of emf depend us on two metal concerned and temp. of both side.

Materials wed Colds junction)
Temp. range ${ }^{\circ} \mathrm{C}$
(1) chromel/constantan
-200 to 1000
(2) Iron/ constantan
-200 to 900
(3) espper/constantan
(4) chromel/alumel
-200 to 400
-200 to 1300
\rightarrow If both jundion are at same temp. then no emf is generated.
\rightarrow Usually one junction is held at $0^{\circ} \mathrm{C}$.
(4) Bimetallic strip-
\rightarrow It is used to convent a temp. change into mehoviel distlacast \rightarrow It consist of two different metal strips bonded together.
\rightarrow The metals have different coefficient of expansion
\rightarrow When temp. increases, strip bends to wards the metal which has low-temp. coefficient. and when temp. decreases, the strip bends towards the metal which has high -temp. coefficient.

\rightarrow The iron cone is free to move axially ins che the coil assembly.
\rightarrow The two secondaries winding $\left(S_{1} \& S_{2}\right)$ have equal no. of turin but are connected in series opposition
\rightarrow Ace supply is given to primary winding.

Movable
irsoncore

($L \vee D T$)
Working
\rightarrow Emf is induced in a secondary csil by changing current in primary will, this effect is called mutual inductana.
\rightarrow When irsn core is in centre, the induced $\operatorname{lm} E_{1} \& E_{2}$ are equal and opposite hence $V_{0}=E_{1}-E_{2}=0$
\rightarrow When iron core is moved towards S_{2}, then $E_{2}>F_{1}$ and $0 / p$ voltage v_{0} is V_{e}.
\rightarrow When iron cone is moved towards S, then $E_{1}>E_{2}$ and op voltage v_{0} is tee.

(alp Voltage V_{0} - displacement charaderistic)

Charaderistic of LVDT-
\rightarrow less frictional losses
\rightarrow Highly linear i / p - o / p characteristic
\rightarrow highly sensitivity
\rightarrow It show bo hysteresis
Dis advantages
\rightarrow sensitive to stray magnetic field
\rightarrow affected by vibration
(2) Capacitive transducer
capacitance of parallel plate capacitor is

$$
C=\frac{E A}{d}
$$

where $\theta \rightarrow$ Permittivity
$A \rightarrow$ Overlapping area of alate $d \rightarrow$ distance between two plate
\rightarrow Displacement c an be measured by measuring change in capacitance. Capacitance can by changed by
(i) change in area, or
(ii) change in distance between two plate.
(i) capacitive trandelucir - using change in area if tate

(Displacement applies to movable plate)
$\leftrightarrows C$ increase
$\rightarrow C$ decrease
Here l α displacement
overlapping area $=b \times \omega$

$$
\begin{aligned}
& c=\frac{E A}{d}=\frac{E l W}{d} \\
& c \alpha l \text { ais placement } \\
& \Rightarrow c \alpha \text { ar s }
\end{aligned}
$$

Displacement
\rightarrow sensitivity $=\frac{\partial C}{\partial l}=\frac{E W}{d}=$ (constant)
(ii) Capacitive transducer- using change in distance between plate

As $C=\frac{E A}{d}$

C increase
so, $c \alpha \frac{1}{d}$
$\longrightarrow C$ decrease

$$
\Rightarrow c \propto \frac{1}{\text { displacement }}
$$

$$
\rightarrow \text { sensitivity }=\frac{\partial C}{\partial d}=\frac{-\epsilon A}{d^{2}}
$$

\rightarrow Here capacitance is nonlinear function of displacement.

So, we go for diffential arrangement to obtain linear characteristic.

Differential Arrangement

$F_{4} \rightarrow$ voltage acmes 4 $\mathrm{E}_{2} \rightarrow$ voltage across C_{2}
\rightarrow Let normal position of central plate represented by solid line. Here $G_{1}=\frac{E A}{d}=C_{2}$
\rightarrow When central plate is displaced by x, the capacitance are

$$
\begin{aligned}
& C_{1}=\frac{E A}{d+x} \\
& C_{2}=\frac{E A}{d-x}
\end{aligned}
$$

Then voltage across C_{1} is $E_{1}=\frac{E C_{2}}{C_{1}+C_{2}}=E \frac{d+x}{2 d}$

$$
\text { 1) } C_{2} \text { is } E_{2}=\frac{\overline{E_{1}+C_{2}}}{C_{1}+C_{2}}=E \frac{d-x}{2 d}
$$

Differential ope voltage

$$
\begin{aligned}
\Delta E & =E_{1}-E_{2} \\
& =E \frac{E_{d} d}{} \frac{E_{x}}{d} \\
\Rightarrow \Delta E & \propto x
\end{aligned}
$$

So, different of p voltage is a linear function of displacement.
(3) Potentiometer -
\rightarrow These transducer can be used for measurement of both linear as well as angular displacement.

(Linear motion potentiometer)
\rightarrow Its operation is based on change in resistance due to change in displacement.
\rightarrow It basically consist of resistive element R_{p} of length x_{p} on which a mechanical arm is placed.
\rightarrow The displacement under measurement (x) os applied to mechanical arm dive to which arm gets displaced over resistive element
$R_{p} \rightarrow$ Total resistance of resistive element
It \rightarrow length of resistive element

$$
\frac{R_{p}}{x_{t}} \rightarrow \text { resistance/ unit length }
$$

\rightarrow If displacement applied to mechanic arm, displaces it over Rp by x_{i} then resistance of element under mechanical arm will be $\frac{R_{p}}{x_{t}} \times x_{0}$
\rightarrow Voltage under mechanical arm $\left.l_{0}=\frac{\left(\frac{R_{p}}{x+}\right.}{R_{p}} \times x_{i}\right) \times e_{i}$

$$
\Rightarrow e_{s}=\frac{e_{i}}{x_{t}} \times x_{i} \text { (By division rule) }
$$

\rightarrow Sensitivity $=\frac{\partial e_{0}}{\partial x_{i}}=\frac{e_{i}}{x_{t}}=$ constant

* Force Transolucer

Strain gauge loadcell-
This is a cylindrical tube to which strain gauge have been attached. When force are applied to cylinder to compress it, then strain gauge gives a resistance change which is a measure of strain and hence applied force.

(Load cell)
\rightarrow In bal cell all four ganges are connected electrically to four arm of wheatsone bridge circuit

Strain gauge
\rightarrow When strain gauge is subjected to force (Stretched/compress) its resistance changes. By measuring change in resistance, strain can be measured.
\rightarrow When strain gauge is subjected to positive strain its length increases while its cross-sectional area decreases. hence resistance changes.

$$
\text { We know that } \begin{aligned}
R= & \frac{g l}{A} \\
& \rho \rightarrow \text { Resistivity } \\
& l \rightarrow \text { length of conductor }
\end{aligned}
$$

$$
A \rightarrow \text { corsssectional area }
$$

Taking \log on bothside

$$
\log R=\log \rho+\log C-\log A
$$

Differentiate above expression writ stress (S)

$$
\begin{aligned}
& \frac{1}{R} \frac{d R}{d S}=\frac{1}{\rho} \frac{d \rho}{d S}+\frac{1}{l} \frac{d l}{d S}-\frac{1}{A} \frac{d A}{d S} \\
& \text { putting } A=\pi r^{2}=\frac{\pi D^{2}}{4} \quad(D \rightarrow \text { dimeter) } \\
& \frac{1}{R} \frac{d R}{d S}=\frac{1}{\rho} \frac{d \rho}{d S}+\frac{1}{l} \frac{d l}{d S}-\frac{4}{\pi D^{2}} \times \frac{2 \pi D}{4} \frac{d D}{d S} \\
& \Rightarrow \\
& \Rightarrow \frac{1}{R} \frac{d R}{d S}=\frac{1}{\rho} \frac{d \rho}{d S}+\frac{1}{l} \frac{d L}{d S}-\frac{2}{D} \frac{d D}{d S}
\end{aligned}
$$

For Small variation, the above expression canbe expressed,

$$
\frac{\Delta R}{R}=\frac{\Delta \rho}{\rho}+\frac{\Delta l}{l}-\frac{2 \Delta D}{D}
$$

from poission ratio wehove

$$
\begin{aligned}
l l & =\frac{\text { Lateral strain }}{\text { Longituctinal strain }} \\
& =\frac{-\Delta A / A}{\Delta \ell / l} \\
& =\frac{-\Delta D / D}{\Delta l / L}
\end{aligned}
$$

$$
\frac{\Delta R}{R}=\frac{\Delta l}{l}\left(\frac{\Delta l / S}{\Delta l / l}+1-\frac{2 \Delta D / D}{\Delta l / l}\right)
$$

$$
\Rightarrow \frac{\Delta R / R}{\Delta l / l}=\frac{\Delta \rho / \rho}{\Delta l / l}+1+2 \mu
$$

$$
\Rightarrow G=\frac{\Delta s / \rho}{\Delta l / \lambda}+1+2 \mu
$$

gauge factor
\rightarrow Here $G=\frac{\Delta R / R}{\Delta L / l} \rightarrow$ gugefactor.
Gauge factor is defined as ration of per
 unit change in resistance to per unit change in length. ΔL
\rightarrow For metal wire straingange which exhibit a change in resistance due to change in mechanical dimension. The term $\Delta \rho / \rho=0$.

Hence gauge factor $G=1+2 \mu$
using a soft iron wire of small diameter is 4.2 . Negietinting the piezo-restivity effed, calculate poisson's ration.

Solution
According to question piero-resitivity effect is neglected ice $\Delta \delta / \rho=0$
So,

$$
\begin{aligned}
& G=1+2 \mu \\
\Rightarrow & 4 \cdot 2=1+2 \mu \\
\Rightarrow & \mu=\frac{4 \cdot 2-1}{2}=1.6 \text { (An) }
\end{aligned}
$$

* Velocity Sensor -
(1) Variable reluctance tachogenerator-

Toothed wheel
(variable reluctame Tachngenencat on)
\Rightarrow It is used to measure angular vebitity.
construction \rightarrow It consists of toothed whee of ferromagnetic material Which is attached to restating shaft.
\rightarrow Pickup coil is wound on a permanent magnet.
Working principle-
As wheel restates, teeth move past the coil and air gap between cis \& ferromagnetic material change.

Thus flux linked by a pick-up col changes. and produces alternating emf in coil.
The reluctance of circuit depends on the width of air gap between toothed wheel and coil.
When troth is close to pole p coil, the reluctance is minimum and it increases when tooth moves away from coil. So it is calleel variable reluctance tachogenerator.
\rightarrow Flux change with time for crib can be written as

$$
\phi=\phi_{0}+\phi_{a} \cos n \omega t
$$

where $\phi_{a} \rightarrow$ amplitude of flux variation

$$
n \rightarrow \text { no of teeth }
$$

$\omega \rightarrow$ angular vebcity
$\phi_{0} \rightarrow$ mean value of flux
From faraday's law

$$
\begin{aligned}
& e=-\frac{r d \phi}{d t} \\
&=-r \frac{d}{d t}\left(\phi_{0}+\phi_{a} \cos n \omega t\right) \\
&=r \phi_{a}^{n \omega \sin (n \omega t)} \\
& \Rightarrow e=E_{\text {max }} \sin \omega t \\
& \text { where } E_{\text {max }}=r \phi_{a} n_{\infty}
\end{aligned}
$$

\rightarrow Tachogenerator is used to measure angular velocity in terms of emf.
(2) $D C$ Tachogenerator
\rightarrow This is usual to measure angular velocity.

\rightarrow It consist of small armature. This armature revolves in magnetic field of a permanent magned.

Working -
When armature revolves between constant field of permanent magnet, the emf is inducect
The commutator converts the alternating current of armature to direct current with the help of brushes.
The moving coil voltmeter measures the induced emf.
\Rightarrow The resistance is connected in series with voltmeter to limit current.
Advantage -
\rightarrow The polarity of induced emf determines the direction of motion of shaft.

Disoulvantage - Brushes and commutator require Periodic maintenance. As their cons contact resistace vary which causes error.
(3) AC Tachogenerator
\rightarrow This is used to measure angular velxity.
\rightarrow In order to overcome some difficulties of de tachogenerdon ac tachgenerator are used.

Construction-

\rightarrow The tachogenerator has rotating magnet.
\rightarrow The armature is provided with $A C$ winding, either Single phase or three phase.
\rightarrow It consist of rectifier for converting ac to de voltage. Working.

When ristor is stationary and primary winding excited by $A C$ voltage, the induced voltage in secondary is zero. Due to As ristor restates, a voltage is induced in secondary winding whose magnitude is proportional to rotor speed.
\rightarrow The s / p voltage is rectified and measured with volt meta.

* Motion sensor

It is an electronic device that is used to detect and measure movement.

These are used primarily in home and business security system.
pyroelectric sensor-
Pyroelectric materials sush as lithium tantalate, is heated to a temperature just below curie temp., in an electric field and material cooled while ming remaining in field, electric dipoles within material line up and become polarised. When the field is then removed the materials retains its polarisation.

(a)

The material
before polarisation)

(b)
material after
polarisation
\rightarrow pyroelectric sensor consist of polarised pyroelectric crystal with metal electrodes on opposite side.
\rightarrow Ions are drawn from surrounding air and electron from measurement circuit connected to sensor to balance ρ urface charge.

\rightarrow If infrared radiation is incident on crystal and changes its temperature, the polarisation is reduced and consequently there is a reduction in charge at surfaces. Which results, there are excess charge on metal electrode. This excess charge leaks through away through measurement circuit.
\rightarrow Thus pyroelectric sensor behave as charge generator which generates charge when there is change in temperature as a incidence of infrared radiation.

Dual pyroelectric sensor

Infrared \rightarrow

\rightarrow It can distinguish between general background heat radiation and motion of human or other moving heat source.
\rightarrow It consist of single front electrode and two back electrode.
\rightarrow The result is two sensors which can be connected So that when they receive same heat signal from general background their op cancel.
\rightarrow When a heat source moves from one Senor to other then the resulting current flow in resistor and it alternates from being first in one direction and then reversed to other direction.
D.C. Motor

An electric motor is a machine which convents electrical energy into mechanical energy.

* D.C Motor Construction -

DC motor look. just like de generator.

It consist of (i) Yoke
(i) field poles and pole shoes
iii) Field coil or winding
iv) Armature assembly
v) Brush

1) Yoke- The yoke or outer frame is of cylindrical shape and serves three main purpose a) It supports magnetic pole and field coil which produce magnetic flux.
b) It carnies the magnetic flux that passes from field poles to armature.
c) It protect the whole machine.
i) Field pole and pole shoes -

These ane made of highly magnetic alloys. The become electromagnet when current is passed through field winding.
ii) field coil/winding - These coils consist of copper wine. When direct current is passed thrash them, they electromagnetise the field poles which produce strong magnetic field around the armature.
iv) Armature assembly - The armature assembly

Consists of a shaft, armature core, armature winding and a commutator.
\rightarrow Armature core is laminated to reduce eddy current loss and has slots to receive for armature winding.

\rightarrow The shaft supports intine armature assembly.
\rightarrow Commutator is made up of copper segments. These Segments are insulated by thin mica sheet. Commutation plays rule in keeping armature rotating in same direction.
(i) Brush \& bearing -

The brushe current is conducted from voltage source to armature by carbon brushes which ane held against the surface of commutator.

* Principle and operation of dec motor -
D. C motor principle- DC motor operation is based on principle that when a current carrying conductor placed in magnetic field, the condudor experiences a mechanical force. The direction of this force is given by Fleming's left hand rule.
Working- When a dec motor is connected to de voltage source, de cw direct current flows through armature conductor. The flow of current produces armature field. lbw, there are two magnetic field in air-gap present between field shoes and armature core. These two magnetic field react with each other to restate the armature.

The commutator playa plays a important role in keeling the armature rotating in the Same direction

Same direction.

Bark emf

When motor armature rotates, its conductor. cut the magnetic flux. Therefore e.m.f is induced in them. This isknown as back emf. The back emf opposes the
applied voltage

$$
\begin{array}{r}
E_{b}= \\
\text { where } \phi=\frac{P \phi A}{60 A} \\
\text { when }
\end{array}
$$

$$
\phi \rightarrow \text { flux } / \text { pole in weber }
$$

$$
z \rightarrow \text { Total no. of armature conductor }
$$

$$
P \rightarrow \text { no. of pole }
$$

$$
\mathrm{H} \rightarrow \text { armature speed in R.P.m }
$$

$$
A \rightarrow \text { no. of parallel path in armature }
$$

$$
\text { For a lapwinding motor } A=P
$$

$$
\text { Wave winding motor } A=2
$$

* Equivalent circuit of a D.C motor armature -
* Torque equation of motor -

$$
\begin{aligned}
& P_{a}=\text { Power derebred in armature }=E_{b} I_{a} \\
& \qquad P_{a}=T \times c u \\
& \Rightarrow P_{a}=T \times 2 \pi r
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
V_{b} \rightarrow \text { brush } A v s t a n d ~ \\
V \rightarrow \text { applied voltage }
\end{array} \\
& \mathrm{R}_{a} \rightarrow \text { armature resistance } \\
& V=E_{b}+I_{a} \vec{R}_{a}+V_{b} \\
& \text { neglecting brush voltage drop } \\
& V=E_{b}+I_{a R} a
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow T=\frac{60 \mathrm{~Pa}}{2 \pi r}=\frac{60 E_{b} \times I_{a}}{2 \pi r} \\
& \Rightarrow T=\frac{30}{\pi A} \times\left(\frac{P \phi Z a}{60 A}\right) I_{a} \\
& \Rightarrow T=0.159 \phi Z I_{a}\left(\frac{P}{A}\right) \quad \text { atm }
\end{aligned}
$$

* Types of D.C motor-
(i) Shunt wound motor-
\rightarrow field short winding and armature winding ane connected parallel

$$
\begin{aligned}
I & =I_{a}+I_{s h} \\
V & =E_{b}+I_{a} R_{a} \\
& =I_{s h} R_{s h}
\end{aligned}
$$

ii) Series wound: motor-
\rightarrow field winding and armature are in

ii) Compound around motor-
compound motor has both series and shunt winding.
 de motor

(Long-shunt componof) d. C. motor

* Characteristic of series motor -

1) Torque and armetunent (T_{0} / I_{a}) characteristic-

$$
T \alpha \phi I_{a}
$$

Fore series motor unto saturation

$$
\begin{aligned}
& \phi \alpha I a \\
& \Rightarrow T \alpha I_{a}^{2} \\
& \text { After saturation } \\
& \phi=\text { constant } \\
& T \alpha I_{a}
\end{aligned}
$$

2) Speed and Fore armature current $\left(\mathrm{N} / \mathrm{I}_{a}\right)$ Characteristic-
$\Gamma \alpha \frac{E_{b}}{\phi}, E_{b}=V_{t}-I_{a}\left(R_{a}+R_{s e}\right)$
$N \propto \frac{V_{t}}{\phi}$
For low value of Ia , $I_{a}\left(R_{a}+R_{s e}\right)$ is neglisible
As, V_{t}^{\prime} is fixed
$N \alpha \frac{1}{\phi}$
$A_{s} \phi \alpha I a$

$$
\Rightarrow r \propto \frac{1}{I_{a}}
$$

3) Speed and Torque (N / T) characteristic -

It is found from above $\left(T / I_{a}\right) \&\left(N / I_{a}\right)$
characteristic that when speed is high, torque is small \& vice versa.

Characteristic of shunt motor -
(1) Toll Ia characteristic -
$T \alpha \phi I a$
For shut mote, ϕ. is constant.

$$
\Rightarrow T \alpha I_{a}
$$

For high Ia, ϕ decreases slightly dive to armature reaction.

(2) N/Ia charaderistic-

$N \alpha \frac{E_{b}}{\phi}$
As $E_{b}=V_{t}$-Ia $R a \quad N T$
So, $\lambda \alpha \frac{\sqrt{t} \text {-TaRa }}{\phi}$
If ϕ is constant then
Nd) V_{t} - Ia R_{a} ?
(3) $N \sim T$ characteristic -

- The characteristic can be drown from ($\left.T_{d} / I_{a}\right),\left(r / I_{a}\right)$ characteristic.

* Speed control of D.C. Motor-

Speed contras of shunt motor
(i) Variation of flux or Flux control method -

The method of varying the speed of motor by controlling the field current.

$$
N \neq \frac{E b}{\phi d}
$$

$\phi / \$|/ \pi|$ The connection of R reduces field currant and hence $f \operatorname{tux}(\phi)$ decreases. So speed in creases.
ii) Armature Rheostatic control method-

The method of varying the speed of motor by varying the armature voltage (back Emf E_{b} by keeping flux constant.

$$
E_{b}=V_{t}-I_{a}\left(R_{a}+R_{e}\right)
$$

As E_{b} decrease speed of more decease. $\left(\because N \| \frac{E_{b} d y}{\phi}\right)$ speed contried of series method
(i) Flux control method -
a) Field diverter -

Due to diventor, Ire decreases
So, flux decrease As a
 result speed can be increased $\left(\cdots N^{1} \alpha \frac{E_{b}}{\phi L}\right)$
(b) Armature diventor-

for a constant
torque, if $I_{a} \downarrow$ then $\phi \hat{\imath}$ (as $\phi \cdot I_{a}=$ constant for then $N \|_{\alpha} \frac{E_{b}}{\phi \downarrow}$ constant Torque)
(ii) Armature Rheostatic methyl-

$$
E_{b}=V_{t}-I_{a}\left(R^{\uparrow}+R_{a}\right)
$$

By increasing

decreases - So speed is reduced.

Stepper Motor
\rightarrow The stepper motor is a device that produces rotation through equal angle, the so called steps, for each digital pulse supplied to its input.
Thus for example, if one pulse produces a rotation of 6° then 60 pulse produce a rotation of 360°.
\rightarrow There are three most popular types of stepper motor-

1) Variable Reluctance type
2) Permanent magnet type
3) Hybrid type

7 Variable Reluctance type
The principle of operation of this type of It epper motor is based on property that flux line to occupy low reluctance path. The stator and rotor therefore get alligned such that magnetic reluctance is minimum.

Construction -

\rightarrow It has salient-pole stator. The stator has
concentrated winding palced over poles. The no. of phase of stator depends upon connection of stator. These phase are \rightarrow excited with DC source through electronic switching device. \rightarrow The rotor is made from ferromagnetic material and carries no winding.

operation.
\rightarrow When winding ' A ' is excited, the rotor aligns with axis of Phase A where reluctance of flux ρ oath is
minimum
\&'Aiscdisconneted moves 90°
the rotor moves
\rightarrow When phase B is excited
\rightarrow When phase B is clock wise direction. the rotor moves, 90° in clockwise direction.

$$
\varlimsup_{D} M_{B}^{B}
$$

\rightarrow When phase ' D ' is excited \& ' c ' is disconnected, the rotor again moves 90° in clockwise direction.

$$
\begin{gathered}
\zeta_{D} G M_{0} \sum_{0} \\
M_{0}
\end{gathered}
$$

\rightarrow The magnitude of any permanent or variable. reluctance stepper motto is given by,

$$
\alpha=\frac{360^{\circ}}{m \pi}
$$

Where, $m \rightarrow$ no. of stator phase

$$
N_{n} \rightarrow \text { no. of rotor teeth }
$$

\rightarrow step angle is also expressed as

$$
\alpha=\frac{N_{s}-N_{\pi}}{N_{s} N_{\pi}} \times 360^{\circ}=\left(\frac{1}{r_{\pi}}-\frac{1}{r_{s}}\right) 360^{\circ}
$$

where, $N_{S} \rightarrow$ stator poles (or stator teeth
\rightarrow Lower value of stepper angle can be obtained by using a stepping motor with more no. of poles on stator and teeth on resistor:
2) Permanent magnet stepper motor -
\rightarrow Here stator is similan to variable reludance type motor but poles are permanent magnet.
\rightarrow When station windings are are excited with DC supply, it produces magnetic flex and establishes worth and southpole. Due to force of attraction and repulsion between permanent magnet rotor \& stator poles, Motor starts moving.

\rightarrow The two coil $A-A^{\prime}$ connected in series with and $B B^{\prime}$ connected in series.
Hybrid stepper motor
\rightarrow A hybrid stepper motor combines the features of variable reluctance and permanent magnet stepper motor.
\rightarrow The permanent magnet is placed axially along the rotor in form of annular cylinder. \rightarrow The stack at each end of rotor are toothed, \rightarrow The stack at each enol of rotor
\rightarrow The rotor sets itself in minimum
 reluctance position in Teeth on d Permanent magnet response to a pair of stater cs il being energised,

Torque - Speed characteristics

Specification-
(1) Holding Torque - This is maximum torque that can be applied to a powered motor without moving it from its rest position and causing spindle rotation
(2) pull -in torque This is the maximum torque against which a motor start, synchronise. for a given pulse rate and reach synchronise.
(3) Pull-out torque

This is maximum for que that can be applied to a motor, running at a given pulserote, without sing synchronisation.
(4) Pull-in rate -This is the maximum stepping rate at a given load torque, motor can start, synchronise, stop or reverse without mising pulses.
(5) Pull-out rate - This is the maximum Stepping rate at a given lad torque, motor remain in synchronism without missing pulses. Beyond this motor lose synchronism.
(6) Slew range - It is the range between pullin \& Pullout curve wolich within which motorcuns on synchronism but cannot start or reverse.

Application of stepper upton -
\rightarrow paper feed motors in printers
\rightarrow caused in computer diskdrives
\rightarrow positioning of work table on contralleal machining equipments
\rightarrow Posi used to perform various function such as cutting, bending, mixing in commercial, medical application.
Q) Calculate step angle for 3-phase, 16-tooth variable reluctance motor.
son-

$$
\begin{align*}
& m=3 \\
& r_{n}=16 \\
& \alpha=\frac{360}{m N_{n}}=\frac{360}{3 \times 16}=7.5^{\circ} \tag{Ans}
\end{align*}
$$

Servo motor

Servo motor are also called control motor．
Servo motor controls position and speed precisely．
These motors are used on feedback control system as output actuators．
\rightarrow They have low rotor inertia and therefore，they have a high speed of response．
\rightarrow Senbmontons ane widely used in radar，computer， robot，machine tools，tracking system \＆guidance system etc．
Working principle of servo motor－

A servomotor has four major components．
i）Motor
ii）position sensor
iii）Gean assembly
iv）control circuit
－Position sensor provides a feedback signal corresponding to the present position of la ⿱亠⿻⿰丨丨八又一 ．This sensor is normally a potentiometer that produces the voltage corresponding to position．Then the feedback voltage is applied to comparator．

The comparator compares reference input to feedback signal and gives error signal which is then applied to motor after amplification.
(1) AC servomotor

Twophase AC servomotor-
\rightarrow It consist of (i) stator, (ii) Rotor
\rightarrow The stator has two distributed windings which ane displaced from each other by 90° electrical.
\rightarrow one winding is called reference winding and is excited by constant ac voltage.
\rightarrow The other winding is called control winding and is excited by variable contras voltage of same frequency as the reference winding but have phase displacement of 90° dectrical.

\rightarrow The control winding is supplied from error amplifier.
\rightarrow The direction of rotation of rotor can be reversed by reversing phase difference between reference winding \& control winding.

Motor of AC servomotor -

In dragcup type there are two airgas. for rotor a cup of non-magnetic. material is used. A stationary iron core at middle of conducting cup completes the magnet circuit.

Speed - Torque characteristic
The torque-speed characteristic for Various control voltage are almost linear.
The torque speed characteristic of two phase motor depends upon ratio of reactance to resistance. for high resistance and low reactance the Characteristic is linear.

(2) DC servomotor -

DC serwomton ane separately excited DC Motor.

$\mathrm{Ra}_{\mathrm{a}} \rightarrow$ Armature resistance
$X_{a} \rightarrow$ Armature reactance
$I_{a} \rightarrow$ armatument current, If \rightarrow field current
There ane two methyl to contrisl speed of $D C$ sewabser
(i) Armature contrib method
(ii) field flume control method.
(i) Armature contrib method-

Frise signal is given to armature and keeping fielded current constant.

We know that $T \alpha \phi I a$

$$
\begin{aligned}
& \Rightarrow T \propto I_{f} I_{a} \\
& \text { As } I_{f} \text { is constant }
\end{aligned}
$$

(ii) Field flux control method-

Error signal is given to field winding and keeping armature current constant.
$T \propto \phi I_{a}$
$\Rightarrow T \propto I_{f} I_{a}$
As I_{a} is constant

$$
\Rightarrow \text { Tん If }
$$

\rightarrow In field controlled $D C$ servomotor time response is slow and hence they ane not commony used.
\rightarrow The armature of DC servo motor has large resistance and therefore small reactance.
So torque-speed characteristic is linear.

(Torque - speed characteristic)

Programmable logic controller (PLC)
\rightarrow PLC is a digital electronic device that uses a Programmable memory to store instruction and to implement function such as logic, sequencing, timing, counting and airthmatic in order to control machine and processes.
\rightarrow It has been specifically desired to make programing easy.

\rightarrow It is possible to modify a control system with at having rewire the connections to input and output devices.
\rightarrow PLC Are also much faster than relay-operated system.
Special Features
Although PLC axe similar to computers, yet they have following specific features.
i) The interfacing for input and output is ins ide the controller.
i) Easily programmable.
iii) Rugged and designed to withstand vibration, temperature, humidity and noise.

Architecture basic structure -

Data bus

PLC Consists of following main components.
$\frac{\text { Driven }}{\downarrow \downarrow \downarrow}$
i) Central processing unit (CPU)
ii) Memory
iii) ip and of p circuitry
i) $C P U$
\rightarrow It contras and processes all the operation within the PLC.
\rightarrow It is provided with a "clack" with a frequency of typically between 1 and 8 mHz . This frequency determines the operating speed of PLC and provides timing and synchronisation for all element in the system.
\rightarrow A "bus system" carries information and data to and from the CPU, memory and input/output unit.

ii) Memory
\rightarrow System read-only - memory (PoM to give permanent storage operating system and fired data use by $C P U$.
\rightarrow Random-access-memory (RAM) for storing: user's 'program.
\rightarrow Data RAM - This where information is stored on status of input and output devices and values of timer and counters.
iii) input/outp ut ${ }^{\left({ }^{(110)}\right)}$ circuitry
\rightarrow The I/O unit provides the interface beteven PLC system and outside world.
\rightarrow The I/O interface provide isolation and signal conditioning function so that sensor input or out device can directly connected to them without need for other circuitry. optocsuple gives the electrical isolation.
\rightarrow The digital signal which is compatible with miens processor in PLC is $5 \mathrm{Vd} \cdot \mathrm{c}$.
However signal conditioning in input channel, with isolation, enables a wide range of ip signals i.e $5 \mathrm{~V}, 12 \mathrm{~V}, 110 \mathrm{~V}, 240 \mathrm{~V}$.
\rightarrow The op will be digital with level of 5 V . However, after signal conditioning with relay, transistor. or trial, the output can be $24 \mathrm{~V}, 100 \mathrm{~mA}$ or o $H O V$ de voltage of $\| O V, 1 \mathrm{~A}$ or $\mathrm{A} \cdot \mathrm{c}$ voltage of $240,1 \mathrm{~A}$.

Relay type output
\rightarrow Relatively slow
\rightarrow cam be used both for $a \cdot c$ and $d \cdot c$ switching
\rightarrow no need of optoselatar
eg $\rightarrow 24 \mathrm{~V}, 10 \triangle \mathrm{~mA}$.

Transistor type output
\rightarrow Faster
\rightarrow only for do scattering
\rightarrow need optoisolatr

- eg \rightarrow D $C \| O V, A$

Triad type suspect
\rightarrow only for $a \cdot c$ switching
\rightarrow need opts solute

- eg. ac $240 \mathrm{~V}, 1 \mathrm{~A}$

Input/ output processing -
There are two methods that can be used fore input/output processing. is continuous updating
ii) mass input/outect copying.
i) continuous updating -
\rightarrow CPU is continuously running through its program and updating it as a result of input signal. Each such lop is called cycle Each input channels are scammed and its effect. on program determined and output corrusespondily changes. This mode of operation is termed continuous updating. There will be built in delay, when each input is examined in order to ensure that only valid innate signals ane read by CPU.
ii) Mass input/outact copying -
\rightarrow Because with contenusus updating, the time taken to examine several hundred inputputput points can become comparatively long. To allow a more rapid execution of a program, a specific ane a of RAM is used as a buffer store.
\rightarrow At start of each program cycle, the CPU 8 cm all inputs and copies their status into RAM. After the program is executed the outputs sig are stored in PAM. At end of program bede all outpost are transferred from RAM to output channels

The sequence is
(D) Scull all inputs and copyinto PAM
b) fetch and decode and execute program instruction, copying output to RAM.
c) update all outputs.
d) Repent all sequare
adder programming
\rightarrow This involves each program take being specifically as though a ruing of a ladder.
\rightarrow The sequence followed by a PLC when carrying out a Aromas

1) Scan if with one rung of ladder program
2) Solve logic operation of that rung
3) Set/Reset the output for that ruing
4) Move on to next ruing and repeat operation 1,2,3 and So on untill the end of Paggram with
each rung of ladder scared. The PLC then goes back to beginning of program and starts again.
\rightarrow The ladder diagram consists of two vertical lines representing power rails.

Ladden symbol

(Normally cheat)
(output)
(special instruction)
$\lg _{\rightarrow}$

op A occurs when ip 1
occurs $0 / \mathrm{B}$ occurs when fife 1 and if 3 occas of c occurs when if 4 or if 5 occurs end of program
$L_{o g i c}$ functions -
The $\log _{i} c$ functions can be obtained by combination of s witches.
2 AND
Normally switch A and B both have both to be cheesed to energise output.
Truth Table-

A	B	$(D / P=A B)$
0	0	0
0	1	0
1	0	0
1	1	1

Here ' 1 represent of s / g
 of AND)
ii) $O R$

Ip is energised when switch A or B or both are chased.
Truth table -

ruth table-		
A	B	$0 / p=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

iii) NoT
\rightarrow Here there is op when there is no ip and no op when there is an isp.

Truth table -

$$
\begin{gathered}
A \\
\hline 0 \\
1
\end{gathered}
$$

iv) $N A N D$ Truth table

A	B	0
0	0	1
0	1	1
1	0	1
1	1	0

V) $\frac{\text { NoR }}{\rightarrow O R \text { gate is followed by a NDT gate. }}$

Truth table

A	B	$(0 \mid p=\overline{A A B}=\bar{A} \cdot \bar{B})$
0	0	1
0	1	0
1	0	0
1	1	0

vi) Exclusive $O R(X O R)$ -

A	B	0
0	$P=\bar{A} B+A \bar{B}$	
0	0	0
1	1	1
1	1	0

Vii) Exclusive Nor $(x+N O R)$ -

Q) Draw the truth table and ladder diagram. When a normally open switch 'A' must be activated and either of two, normally open, s withes ' B ' and ' ' ' must be activated for a coil to energise.
Ans)-

Truth table-

A	B	C	opP
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Instruction lists

高

$\mathrm{Cg}_{\rightarrow}$

Using mitasubishi mnemanies,

- LD $\times 400$ Ani) $x 401$
OUT Y Y 430
eg y

LD $\times 400$
OR $\times 40$)
OUT y 430
$\lg _{\rightarrow}$

LDI $\times 400$

$$
\text { Aता } \times 40 \text {) }
$$

$$
\text { OUT y } 430
$$

$e g \rightarrow$

$\mathrm{eg}_{\rightarrow}$

LD $\times 400$
OR $\times 402$
AnD $\times 401$

$$
\begin{aligned}
& \text { OUT y } y_{43} 0 \\
& \text { END }
\end{aligned}
$$

$\operatorname{eg}_{\rightarrow}$

LD $\times 400$
AND $\times 401$
(1) $\times 404$

OR $\times 405$
And $\times 403$
o $R \times 406$
AND $\times 402$
ORB
out $y 430$

eg_{-}

(1) x_{0}

Ans +
LD x_{2}
ANI x_{3}
ORB
LD X_{4}
ORI $\times 5$
ANB
OUT Y。
eg_{-1}

$L D \quad \times 400$
OUT Y430
LDI 1×400
OUT Y433)

Jump and call
\rightarrow Jump instruction enables pant of a program to be jumped over and the way in which subroutine programmes can be called up.
It describes as,
If (Some cond ion occurs) Then
perform some instruction ELSE
perform some other instruction.
$\mathrm{eg} \rightarrow$

\rightarrow Jump instruction is denoted by CJP (conditional Jump) and the place to which jump occurs is denoted by EJP (end of jump).
\rightarrow In above example when ip 1 is or l then program jumps to ruing with the end of jump relay coil EJP and So continues with program ' C '.

Otherwise it continues with program B.

Subroutines -
Sobrratines are small prayrams to perform specific tasks which can be called for use in larger program.
g_{\rightarrow}

call to subriaution conditional on ip 1
Main program and ret worn point after subros utine

end of subroutine and return to main program End of entire program
(Subroutine call with mitsubishiopLC)
\rightarrow In above example, when ip 1 occurs the Subratine P is called. This is then executed, the in striction 'SRET' indicates its end and program returns to main program. FEND instruction indicate end of main pugram,

Latching
\rightarrow Latch circuit is a self-maintaing circuit, after being energised, it maintains that state untill another input is received. It remembers last State.
eg \rightarrow

\rightarrow When ip 1 is energised and closes, there is an op. However, whenthere is an op, a set of contact associated with o/p is energised and closes. These contact OR the iP P 1 contact.
\rightarrow Thus, even if i|p 1 contacts open, the circuit remain. the op energised. The only way to release the $0 / p$ is by operating the normally cased contact i lp 2 .
Internal relays
These arenot actual relay but simulation by the Software of PLC. Internal relays are often used when there are programs with multiple ip condition.
eg

Here off can be controlled by two internal relay $I_{R 1}$ and $I R 2$.
eg \rightarrow

Here internal relay $I R$ is used for starting of multiple opes.

